
Journal of Approximation Theory 103, 91�118 (2000)

Constructive Polynomial Approximation on the Sphere

Ian H. Sloan and Robert S. Womersley

School of Mathematics, University of New South Wales, Sydney 2052, Australia
E-mail: I.Sloan�unsw.edu.au, R.Womersley�unsw.edu.au

Communicated by Doron S. Lubinsky

Received December 8, 1998; accepted in revised form September 16, 1999

This paper considers the problem of constructive approximation of a continuous
function on the unit sphere S r&1�Rr by a spherical polynomial from the space Pn

of all spherical polynomials of degree �n. In particular, for r=3 it is shown that
the hyperinterpolation approximation Ln f (in which the Fourier coefficients in the
exact L2 orthogonal projection Pn f are approximated by a positive weight quad-
rature rule that integrates exactly all polynomials of degree �2n) has the exact
order &Ln& �

� n1�2 for its uniform norm, provided the underlying quadrature rule
satisfies an additional ``quadrature regularity'' assumption. For r=3, this rate of
growth is the same as that of &Pn&, and is known to be optimal among all linear
projections on Pn . For r�3 an upper bound on &Ln& of non-optimal asymptotic
order O(n(r&1)�2) also holds, without any special assumption on the quadrature
rule. � 2000 Academic Press

1. INTRODUCTION

In this paper we consider polynomial approximations on the unit sphere
S r&1�Rr from the space of all spherical polynomials of degree at most n
(i.e. the space of all polynomials in r variables restricted to S r&1).

In particular, we shall show for r=3 that the hyperinterpolation
approximation introduced in [17] can have the optimal order of growth
for its operator norm among all linear projections considered as maps from
C(S r&1) to C(S r&1), namely O(n1�2). The hyperinterpolation approxima-
tion Ln f may be described as an approximation obtained from the partial
sum of the Laplace (or Fourier) series for f, when the exact integrals in the
L2 inner products are approximated by a suitable quadrature rule: specifi-
cally, the quadrature rule must have positive weights, and must give the
exact integral when applied to any polynomial of degree less than or equal
to 2n. A formal description of the hyperinterpolation approximation is
given in Section 3. Examples of suitable quadrature rules are considered in
Section 6. The operator norm &Ln&C � C of Ln as a map from C(S r&1) to
C(S r&1) is studied in Section 5, and for r=3 shown there to be bounded
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by n+1 without further assumptions, and by cn1�2 under a mild additional
assumption on the quadrature rule.

The most studied polynomial approximation that needs only a finite
number of point values of f is the polynomial interpolant 4n f. This coin-
cides with a given continuous function f at a prescribed set of points
[x1 , ..., xdn

]�S r&1, where dn #d (r)
n is the dimension of the space of spheri-

cal polynomials of degree at most n. Through the work of Reimer [16] and
others, much is known about the norm &4n&C � C of 4n as a map from
C(S r&1) to C(S r&1), yet the problem of finding a set of interpolation
points that yields a good uniform approximation, or of understanding how
good such approximations can be, remains elusive. A bound on &4n&C � C

given by Reimer [16] has, for r=3, the form (n+1)(*avg �*min)1�2 (see Sec-
tion 7), where *avg and *min are the average and minimum eigenvalues of
a certain positive-definite matrix. The ratio *avg�*min depends on the choice
of points [x1 , ..., xdn

], but beyond the fact that *avg�*min�1 and the less
obvious fact (shown by Reimer [16]) that *avg �*min>1 for r�3 and n�3,
little seems to be known about its possible dependence on r and n. One
known result (see Section 7) is that for r=3 there exist interpolation points
[x1 , ..., xdn

] (namely the ``extremal fundamental systems'' of Reimer [16])
such that &4n &C � C�(n+1)2. However, this result is almost certainly very
pessimistic.

The simpler problem of the approximation properties of the hyperinter-
polation operator Ln as a map from C(S r&1) to L2 (S r&1) was studied in
[17]. In that setting the approximation properties of Ln are in a certain
sense ideal, in that the norm of Ln is shown in [17] to be given by

&Ln&C � L2
=|S r&1| 1�2, (1.1)

where |S r&1| denotes the surface area of the unit sphere. This is the best
possible result, as is easily seen by considering the operator applied to the
constant function 1. In contrast, it has been shown in [18] that for r�3
and n�3 the interpolation operator 4n necessarily has a larger norm in the
C to L2 sense, that is

&4n&C � L2
>|S r&1|1�2 if r�3 and n�3. (1.2)

The proof of the latter result in [18] is by contradiction, and therefore
gives no insight into the extent to which the inequality in (1.2) departs
from equality.

The present paper, concentrating on the C(S r&1) to C(S r&1) setting,
extends the known theoretical results for hyperinterpolation.

The results of computational experiments for the two approximation
schemes will be published elsewhere.
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Generic constants are denoted by c, while more specific constants are
denoted c1 , c2 , a1 , a2 , etc.

2. PRELIMINARIES

For given n�0, let Pn #P (r)
n be the set of spherical polynomials of

degree �n in r variables; i.e. the set of all polynomials in r variables of
degree at most n restricted to S r&1, the unit sphere in Rr.

A popular basis for P (r)
n is the set of spherical harmonics [14]

[Y (r)
l, k : 1�k�N(r, l), 0�l�n],

where

N(r, 0)=1, N(r, l)=
2l+r&2

l \l+r&3
l&1 + for l�1.

We shall assume that the spherical harmonics are normalized so that

|
S r&1

Y (r)
l, k(x) Y (r)

l$, k$(x) dx=$ll$ $kk$ ,

where dx denotes surface measure on S r&1. The dimension of the space P (r)
n

we denote by

dn #d (r)
n = :

n

l=0

N(r, l)=N(r+1, n). (2.1)

For example, in the important special case r=3 we have N(3, l)=2l+1
and dn=(n+1)2.

The addition theorem of spherical harmonics [14] will play an impor-
tant role. It states

:
N(r, l)

k=1

Y (r)
l, k(x) Y (r)

l, k( y)=
N(r, l)
|S r&1|

P (r)
l (x } y), (2.2)

where x } y is the inner product in Rr, |S r&1| is the surface area of the unit
sphere,

|S r&1|=
r?r�2

1(1+r�2)
,

and P (r)
l is the Legendre polynomial of degree l in r dimensions, nor-

malized by P (r)
l (1)=1.
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3. THE APPROXIMATIONS DEFINED

For given dimension r and degree n, let X#X (r)
n =[x1 , ..., xdn

]�S r&1 be
a ``fundamental system'' of points on the sphere, meaning that the only
member of P (r)

n that vanishes at every point x j , j=1, ..., dn , is the zero poly-
nomial.

Given an arbitrary f # C(S r&1), we denote by 4n f the unique polyno-
mial in Pn that interpolates f at each point of the fundamental system,
that is

4n f # P (r)
n , 4n f (xj)= f (x j), j=1, ..., dn . (3.1)

As a prelude to the introduction of the hyperinterpolation approxima-
tion, it is convenient to introduce an intermediate approximation, which is
theoretically simpler but harder to compute, namely the L2 orthogonal
projection of f onto P (r)

n , given by

Pn f = :
n

l=0

:
N(r, l)

k=1

( f, Y (r)
l, k) Y (r)

l, k , (3.2)

where ( } , } ) is the L2 inner product on S r&1,

(u, v) :=|
Sr&1

u(x) v(x) dx.

The hyperinterpolation approximation Ln f is obtained by approximat-
ing the inner product in the Definition (3.2) of Pn f by a positive-weight
quadrature rule with the property of integrating all spherical polynomials
of degree �2n exactly. Thus the hyperinterpolation approximation has the
form

Ln f = :
n

l=0

:
N(r, l)

k=1

( f, Y (r)
l, k)m Y (r)

l, k , (3.3)

where ( } , } )m is a discrete version of the inner product obtained by
application of an m-point quadrature formula,

(u, v)m := :
m

j=1

wju(tj) v(t j),

and where the weights wj and points tj in the quadrature rule Q,

Qg := :
m

j=1

wjg(tj)r|
Sr&1

g(x) dx, (3.4)
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must satisfy

wj>0, tj # S r&1, j=1, ..., m, (3.5)

and

Qp=|
Sr&1

p(x) dx, \p # P (r)
2n . (3.6)

According to [17], it follows from the definition that m�dn .
Note that the hyperinterpolation approximation Ln f depends on the

choice of quadrature rule Q, just as the interpolation approximation 4n f
depends in the choice of fundamental system X. The notation will usually
not make this dependence explicit.

All three of the approximations described here are linear projections
onto P(r)

n , in that

p # P (r)
n O 4n p=Pn p=Ln p= p.

In the last case this follows by observing for p # P (r)
n that

Lnp= :
n

l=0

:
N(r, l)

k=1

( p, Y (r)
l, k)m Y (r)

l, k= :
n

l=0

:
N(r, l)

k=1

( p, Y (r)
l, k) Y (r)

l, k= p,

where the second equality follows from the exactness of the quadrature rule
for polynomials of degree �2n, and the last from the fact that the sum is
just the Laplace or Fourier series for the polynomial p.

4. CONSTRUCTING 4n f AND Ln f

In this section we consider alternative formulas for constructing 4n f and
Ln f, given a fundamental system X in the first case, and a quadrature rule
Q in the second. At the same time we shall be developing reproducing-

kernel representations that will be needed in the later theoretical analysis.
The most obvious way to compute the interpolant 4n f is to represent it

as a linear combination of spherical harmonics,

4n f = :
n

l=0

:
N(r, l)

k=1

al, kY (r)
l, k , (4.1)

where the coefficients al, k must satisfy, from the interpolating Property 3.1,
the linear system

:
n

l=0

:
N(r, l)

k=1

Y (r)
l, k(x j) al, k= f (x j), j=1, ..., dn . (4.2)
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The matrix [Y (r)
l, k(xj)] in this linear system is not singular, because of the

assumption that X=[x1 , ..., xdn
] is a fundamental system. While the matrix

elements Y (r)
l, k(xj) with fixed xj can be computed relatively efficiently by

exploiting recurrence relations of the spherical harmonics, the time for
computing 4n f will often be dominated by the time needed to solve the
dense linear system (4.2). In contrast, the hyperinterpolation approxima-
tion Ln f is already represented as a linear combination of spherical har-
monics by the Definition (3.3), and does not need the solution of a linear
system.

We develop here alternative representations of 4n f and Ln f (see (4.10)
and (4.13) below), which may sometimes be preferred in practice because
of their simplicity; in particular, explicit computation of spherical har-
monics is avoided in these formulas.

To this end, it is useful to introduce the kernel Gn ( } , } )=G (r)
n ( } , } ),

defined by

Gn (x, y) := :
n

l=0

:
N(r, l)

k=1

Y (r)
l, k(x) Y (r)

l, k( y), x, y # S r&1. (4.3)

This is a ``reproducing kernel'' in P (r)
n , because of the following elementary

but important property:

Lemma 4.1 (Reimer [16])

( p, Gn ( } , x))= p(x) \p # P (r)
n .

Proof. For p # P (r)
n , the Definition 4.3 gives

( p, Gn ( } , x))= :
n

l=0

:
N(r, l)

k=1

( p, Y (r)
l, k) Y (r)

l, k(x),

which is simply the Laplace series representation of the spherical polyno-
mial p(x). K

It will be important to us that Gn (x, y) is easily computed. The principal
simplification is that Gn (x, y) is ``bizonal;'' that is, its value depends only
on the inner product x } y of the unit vectors x and y. This follows from the
addition theorem for spherical harmonics (2.2), which yields

Gn (x, y)=G� n (x } y), x, y # S r&1, (4.4)

where

G� n (z)=
1

|S r&1|
:
n

l=0

N(r, l) P (r)
l (z), z # [&1, 1]. (4.5)
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For example, if r=3 we have

G� n (z)=
1

4?
:
n

l=0

(2l+1) Pl (z), (4.6)

where Pl ( } ) is the usual Legendre polynomial. This r=3 result can be
written in closed form, as pointed out by [10], in terms of the Jacobi poly-
nomial P (1, 0)

n (in the notation of Szego� [20]) appropriate to the weight
function (1&z). The closed form r=3 result (using [20, Equation (4.5.3)])
is

G� n (z)=
n+1

4?
P(1, 0)

n (z). (4.7)

Of particular interest to us will be the value of G� n (1), i.e. the value of
Gn (x, y) when y=x. According to (4.5) and (2.1) it is given by, as pointed
out by Reimer [16],

G� n (1)=
dn

|S r&1|
. (4.8)

For example, for r=3 it has the value

G� n (1)=
(n+1)2

4?
.

To each point xj of the fundamental system X=[x1 , ..., xdn
] we may

define a ``kernel polynomial'' gj # P (r)
n , by

gj (x) :=Gn (x, xj)=G� n (x } x j), j=1, ..., dn . (4.9)

We shall say that gj is the kernel polynomial with axis xj . It is easy to see
that the set [g1 , ..., gdn

]�P(r)
n is linearly independent, because of the

assumption that X is a fundamental system, thus this set spans P (r)
n . There-

fore the interpolating polynomial 4n f may now, if we wish, be expressed
in the form

4n f = :
dn

j=1

ej gj , (4.10)

where the real coefficients ej are determined by the linear system

:
d

j=1

Gijej= f (xi), i=1, ..., dn , (4.11)
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with

Gij :=gj (xi)=G� n (xi } xj)=Gn (xi , x j), i, j=1, ..., dn . (4.12)

The computation of the interpolant 4n f via (4.10), (4.11), and (4.12), is
easy to implement, requiring only the repeated evaluation of the polyno-
mial G� n and the solution of a linear system for r=3. The time for comput-
ing the matrix (Gij) is of order O(nd2

n)=O(n5), and the time for a single
evaluation of 4n f (x) is of order O(ndn)=O(n3), which in practice will be
unimportant compared with the O(d3

n)=O(n6) time needed to solve the
linear system, unless the interpolant is required at very many points.

Now we describe an analogous expression for the hyperinterpolation
approximation Ln f, obtained by interchanging the order of summation in
(3.3). In this way we obtain

Ln f = :
m

j=1

wj f (t j) gj , (4.13)

where this time gj denotes the kernel polynomial with axis tj , that is

gj (x) :=Gn (x, tj)=G� n (x } t j), j=1, ..., m. (4.14)

(It will be clear from the context whether gj has as its axis the point xj of
the fundamental system X, or the point tj of the quadrature rule Q.)

We observe that (4.13) has a particularly simple structure, similar to the
formula (4.10) for 4n f, but requiring no solution of a linear system.

5. HYPERINTERPOLATION IN THE UNIFORM NORM

In this section we study the hyperinterpolation operator Ln as a map
from C(S r&1) to C(S r&1).

Because Ln is a linear projection on Pn we are able to argue in a
standard way, that

&Ln f &f &�=&Ln ( f &/)&( f &/)&�

for / an arbitrary polynomial in Pn . From this it follows immediately that

&Ln f &f &��(1+&Ln &C � C) En ( f ), (5.1)

where

&Ln&C � C= sup
f # C, f{0

&Ln f &�

& f &�
,
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and En ( f ) is the error of best uniform approximation,

En ( f )= inf
/ # Pn

& f&/&� .

Thus our task reduces, in the usual way, to the study of the norm of the
operator Ln in the setting C to C.

To guide us in assessing the quality of Ln , it is useful to recall first that
Pn , the L2 orthogonal projection, is the minimal norm projection in the
setting C to C: that is, if 0 is an arbitrary linear projection onto P (r)

n , then

&Pn&C � C�&0&C � C .

This result was proved by Berman [2] for the case r=2, and extended to
general r by Daugavet [5]; a proof for r�3 is given by Reimer [16].
Moreover, for r=2 it is known (see [6]) that

&Pn&C � C �� log n,

while for r=3 it was shown by [11] that

&Pn&C � C �� n1�2, (5.2)

where an �� bn means that there exist positive constants c1 and c2 such that
c1an�bn�c2an . The generalization of this result to arbitrary r�3, dis-
cussed by Reimer [16, Section 11], is

&Pn&C � C �� n(r&2)�2. (5.3)

There are two main results in this section. First, in Theorem 5.5.2 we
establish a general result, that &Ln&C � C is bounded above by d1�2

n . For the
important special case r=3 Theorem 5.5.2 yields

&Ln&C � C�n+1.

This is an improvement on the result &Ln&C � C�cn2 obtained by [10,
Theorem 3.2(i)]. On the other hand, for all r�3 the rate of growth of d1�2

n

with n, namely O(n(r&1)�2), is worse by a factor of n1�2 than the optimal
result for &Pn &C � C given by (5.3). That prompts the question of whether
better results for &Ln&C � C can be achieved.

In Theorem 5.5.4 we obtain, for the special case r=3 and under a mild
additional assumption on the quadrature rule, the improved result that
&Ln&C � C �� n1�2, which, as we have noted, is optimal with respect to order.

The following simple lemma provides the foundation for these results. In
this lemma g j (x)=G(x, tj) is the kernel polynomial with axis tj , as in
(4.14).
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Lemma 5.5.1. The norm of the hyperinterpolation operator Ln in the
setting C to C is given by

&Ln&C � C= max
x # Sr&1

:
m

j=1

w j | gj (x)|.

Proof. From the expression (4.13) for Ln f we have

|Ln f (x)|� :
m

j=1

wj | f (t j)| | gj (x)|� :
m

j=1

wj | gj (x)| & f &� ,

from which it follows that

&Ln f &�� max
x # Sr&1

:
m

j=1

wj | gj (x)| & f &� , (5.4)

where we exploit here the continuity of the spherical polynomials gj for
j=1, ..., m.

The proof is completed by showing that there exists f * # C(S r&1), with
f *{0, for which (5.4) is an equality. To this end, let x0 # S r&1 achieve the
maximum in the sum in (5.4), i.e.

:
m

j=1

wj | gj (x0)|= max
x # S r&1

:
m

j=1

wj | gj (x)| . (5.5)

Then define f * # C(S r&1) such that & f *&�=1 and

f *(tj)=sign gj (x0), j=1, ..., m;

concrete constructions of f * satisfying these conditions can be accom-
plished in well-known ways. By (4.13) we now have

Ln f *(x)= :
m

j=1

wj f *(t j) gj (x)= :
m

j=1

wj gj (x) sign gj (x0),

and hence, on setting x=x0 ,

Ln f *(x0)= :
m

j=1

wj | gj (x0)|= max
x # Sr&1

:
m

j=1

wj | g j (x)|=&Ln f *&�

so that (5.4) is an equality for f =f *. This completes the proof. K
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With the aid of Lemma 5.5.1 we can now turn to estimating the rate of
growth of &Ln &C � C with n. The first result needs no further assumptions.

Theorem 5.5.2. The norm of the hyperinterpolation operator in the
setting C to C is bounded by

&Ln&C � C�d1�2
n .

Proof. Let x0 # S r&1 satisfy (5.5), as in the proof of Lemma 5.5.1. Then
that lemma gives, by the use of (4.14) and the Cauchy�Schwarz inequality,

&Ln&C � C = :
m

j=1

wj | gj (x0)|= :
m

j=1

wj |Gn (x0 , t j)|

= :
m

j=1

w1�2
j w1�2

j |Gn (x0 , tj)|

�\ :
m

j=1

wj+
1�2

\ :
m

j=1

wj Gn (x0 , t j)
2+

1�2

=|S r&1|1�2 \|Sr&1
Gn (x0 , x)2 dx+

1�2

,

where in the last step we twice used the property (3.6) of the quadrature
rule Q. The reproducing kernel property in Lemma 4.1, combined with the
expression (4.8) for the ``polar'' value of G� n , gives

|
S r&1

Gn (x0 , x)2 dx=Gn (x0 , x0)=
dn

|S r&1|
,

from which it follows that

&Ln&C � C�d1�2
n . K

Now we set r=3. To obtain the promised more precise results we need
to assume that the family of m-point quadrature rules Qm has, in addition
to the property (3.6), also a certain regularity property: roughly speaking,
that the contribution to the quadrature sum from a spherical cap of a
reasonable size, when Qm is applied to the function f#1, is never unboun-
dedly large in relation to the corresponding integral. A ``spherical cap of
spherical radius :'' is the closed cap cut from S2 by a cone of half-angle :;
the ``axis'' of the spherical cap is the polar axis of the cone. The surface area
of a spherical cap of spherical radius : is 2?(1&cos :)r?:2 when : is
small. From this it follows that the expected contribution from a spherical
cap of spherical radius 1�- m is approximately ?(1�- m)2=?�m. In this
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light it is natural to require that the contribution from the quadrature
points actually found in such a spherical cap be bounded by c�m, where c
is a constant. This motivates the following assumption, which we shall call
the ``quadrature regularity'' assumption.

Assumption 1 (Quadrature regularity). Let r=3. The infinite family of
positive-weight m-point quadrature rules [Qm] is said to satisfy the quad-
rature regularity assumption if there exists c1>0, with c1 independent of m,
such that for every spherical cap A of spherical radius 1�- m we have

:
tj # A

wj�c1 |A|, (5.6)

where |A|=2?(1&cos(1�- m))r?�m is the surface area of A.

In Section 6 we show that many practical quadrature schemes do satisfy
this assumption. It follows from the assumption, as we shall see in
Lemma 5.5.3, that spherical caps with spherical radius larger than 1�- m
display the same regularity property.

We shall also need an analogous regularity result for ``spherical collars'',
where by a spherical collar we mean the difference between two spherical
caps with the same axis. The ``spherical radii'' of a spherical collar which
is the difference of spherical caps with spherical radii ; and :, with ;>:,
are : and ;. The ``height'' of such a spherical collar is cos :&cos ;, and the
``spherical height'' is ;&:.

Lemma 5.5.3. Let [Qm] be an infinite family of positive-weight m-point
quadrature rules on S2 satisfying the quadrature regularity assumption. Then
there exist constants c2 , c3>0, independent of m, such that for every spheri-
cal cap A: of spherical radius :�1�- m we have

:
tj # A:

wj�c2 |A: | ,

and for every spherical collar B:, ; with spherical radii :, ; with 0<:<;�?
and ;&:�1�- m we have

:
tj # B:, ;

wj�c3 |B:, ; | .

Proof. Let x0 # S2 be the axis of A: and B:, ; . We first prove the second
result for the special case of a spherical collar B:, ; whose spherical height
;&: is exactly equal to 1�- m.
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Let #=(;+:)�2, and consider the latitude l#=[x # S2 : x } x0=cos #],
which is a circle on S2 of radius sin #. We claim that (as pointed out to us
by D. Mauersberger, private communication) B:, ; can be covered by
K=W2?- m sin #X spherical caps D1 , ..., DK of spherical radius 1�- m, with
axes x1 , ..., xK equally spaced on the circle l# . To see this, note first that the
distance between successive axes (measured along l#) is 2? sin #�K�1�- m.
Given x # B:, ; , let x~ denote the nearest point to x on l# , and let xj be a
spherical cap axis closest to x~ . The great-circle distance between x and xj

is bounded above by the sum of the distance between xj and x~ along l# and
the great-circle distance between x~ and x, and so is bounded above by
1
2(1�- m)+ 1

2(1�- m)=1�- m, thus x # Dj . Thus the claim is established. It
follows from this and the quadrature regularity assumption that

:
tj # B:, ;

w j�Kc1 |D1 |�
c1?K

m
�

c1?
m

(2? - m sin #+1),

where we have used |D1 |=2?(1&cos(1�- m))�?�m. We also have

|B:, ; |=2?(cos :&cos ;)

=4? sin # sin(1�2 - m)

�4 sin #�- m, (5.7)

where in the last step we used sin %�2%�? for 0�%�?�2. Putting the
results together, we have

:
tj # B:, ;

w j�c1? \?
2

|B:, ; |+
1
m+�c1

3?2

4
|B:, ; | ,

where in the last step we used (5.7) together with sin # �
sin(1�2 - m)�1�? - m to obtain 1�m=(?�- m)(1�(? - m))�(?�4) |B:, ; |.
Thus the spherical collar result is proved for ;&:=1�- m with
c3=c13?2�4.

Now consider an arbitrary spherical collar B:, ; with ;&:�1�- m. If
;&: is an integer multiple of 1�- m the result extends trivially, with the
same constant as above. Otherwise, following an argument due to
D. Mauersberger (private communication), we consider the two sub-collars

B:=B:, :+k�- m , B;=B;&k�- m, ; ,
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where k=w(;&:)- mx. Note that B: �B:, ; and B; �B:, ; , and that
every point of B:, ; is in at least one of B: , B; because k�1. Thus

:
xj # B: , ;

wj� :
xj # B:

wj+ :
xj # B;

wj�c1

3?2

4
( |B: |+|B; | )

�
c13?2

2
|B:, ; | .

Thus the spherical collar result is now proved, with c3=c1 3?2�2.
Finally, to prove the spherical cap result for a spherical cap A: of spheri-

cal radius :�1�- m, let A denote the spherical cap with the same axis and
spherical radius 1�- m, and let B: be the spherical collar with the same axis
and spherical radii :&k�- m and :, where k=W:- mX&1. Both A and B:

are subsets of A: , and every point of A: is in at least one of A and B: , thus
we obtain

:
xj # A:

wj � :
xj # A

wj+ :
xj # B:

wj

�c1 |A|+c1

3?2

4
|B: |

�c1 \1+
3?2

4 + |A: | .

Thus the spherical collar result is proved, with c2=c1 (1+3?2�4). K

We now turn to the foreshadowed estimation of &Ln &C � C .

Remark 1. In the following theorem we do not need the property (3.6)
of Qm . While the theorem can be applied to families of rules [Qm] not
satisfying this condition, it needs to be remembered that the estimate (5.1)
for the error in Ln f is no longer valid in this case.

Remark 2. The condition m�(n+1)2 in the theorem below, relating m
(the number of quadrature points) with n (the degree of the spherical poly-
nomial space P (r)

n ) is natural, in that it is shown in [17] to be necessary
if (3.6) holds.

Theorem 5.5.4. Let r=3. For each n�0 let m=mn satisfy m�(n+1)2.
Moreover let [Qm] be a family of positive-weight m-point quadrature rules
satisfying the quadrature regularity assumption. Then there exists c4>0,
with c4 independent of n, such that

&Ln&C � C�c4n1�2, (5.8)
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where Ln f # P (3)
n is the hyperinterpolation approximation associated with

Qm .

Proof. Let x0 satisfy (5.5), so that from Lemma 5.5.1, together with
(4.14) and (4.7), we have, on setting zj=x0 } tj ,

&Ln&C � C= :
m

j=1

wj | gj (x0)|=
n+1

4?
:
m

j=1

wj |P (1, 0)
n (zj)|

�
n+1

4?
:

zj�0

wj ( |P (1, 0)
n (zj)|+|P (0, 1)

n (zj)| ),

where in the last step we have used P (1, 0)
n (&z)=(&1)n P (0, 1)

n (z) (see Szego�
[20, Equation (4.1.3)]). Both |P (1, 0)

n (z)| and |P (0, 1)
n (z)| are bounded by

P(1, 0)
n (1)=n+1, from [20, Equation (4.1.1) and the last sentence of page

168]. Together with Equation (7.32.6) of [20] this gives

|P (1, 0)
n (cos %)|+|P (0, 1)

n (cos %)|�min(2(n+1), c5n&1�2%&3�2), 0�%�
?
2

,

(5.9)

for some constant c5>0.
We denote the right-hand side of this inequality by un (cos %). Thus

&Ln&C � C�
n+1

4?
:

zj�0

wjun (zj), (5.10)

where un is monotone nondecreasing on [0, 1]. We split the right-hand
side into a ``main'' term M, which contains the contributions to the sum for
0�zj<z0 , and a remainder R, containing the contributions from the
spherical cap z�z0 , with z0 a number yet to be specified, but which
satisfies 0<z0�1&1�n.

The main term M is to be handled by bounding it above by a Riemann
sum, and thence by a 1-dimensional integral. Thus we partition the interval
[0, z0] by defining

!k=z0&
N&k

n
for k=1, ..., N,

where N=Wnz0 X�n&1, so that

!1>0, !N=z0 , and !k+1&!k=
1
n

for k=1, ..., N&1.
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We also define !0=!1&1�n and !N+1=z0+1�n�1. Now we can write

M=
n+1

4?
:

0�zj<z0

w jun (zj)=
n+1

4?
:

N&1

k=0

:
!k�zj<!k+1

wjun (zj),

where for z<0 we define un (z)=0. Using the monotonicity of un , we then
deduce

M�
n+1

4?
:

N&1

k=0
\ :

!k�zj<!k+1

wj+ un (!k+1). (5.11)

We may bound the sum of the weights over each spherical collar of height
1�n by appeal to Lemma 5.5.3. (Note that 1�n>1�- m, and that for
0�:<;�? it is clear that the spherical height ;&: of the spherical collar
is greater than the height cos :&cos ;=1�n, from which it follows that
;&:�1�n>1�- m.) Since the surface area of a spherical collar of height
1�n is 2?�n, Lemma 5.5.3 gives

:
!k�zj<!k+1

wj�2?c3 �n. (5.12)

Moreover, using again the monotonicity of un we obtain

1
n

:
N&1

k=0

un (!k+1)� :
N&1

k=0
|

!k+2

!k+1

un (!) d!=|
!N+1

!1

un (!) d!

�|
1

0
un (!) d!�c5 n&1�2 |

?�2

0
%&3�2 sin % d%

�c5n&1�2 |
?�2

0
%&1�2 d%=- 2?c5 n&1�2.

From this, together with (5.11) and (5.12), it follows that M�
- 2?c3c5 n1�2. Note that the sum is independent of z0 .

Now we turn to the term R, given by

R=
n+1

4?
:

zj�z0

wjun (zj).

After preliminary study it turns out to be adequate to partition the region
zj�z0 into a spherical cap and two spherical collars of appropriate sizes
and all with axis x0 , and to estimate the contribution to R from each using
Lemma 5.5.3. Specifically, let A} be the spherical cap with axis x0 and with
spherical radius n&}, where 0<}<1, let B# be the spherical collar that
adjoins A} and has spherical height n&#, where 0<#�}, and finally let D
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be the spherical collar that adjoins B# and has height n&1. The union
A} _ B# _ D is the intersection of S2 with the half-space z=cos %�z0 if we
choose

z0=cos \ 1
n}+

1
n#+&

1
n

,

which we note ensures z0 # (0, 1&1�n) if n is sufficiently large. Introducing
an obvious notation, we may write

R=R(A})+R(B#)+R(D). (5.13)

For the term R(A}) the first part of Lemma 5.5.3 is applicable, because
n&}>n&1 (since }<1), which in turn exceeds m&1�2, thus from the lemma
and (5.9) we obtain

R(A})�
n+1

4?
c2 |A} | un (1)�

n+1
4?

c2 ?(n&})2 2(n+1)

=
1
2

c2 (n+1)2 n&2}�2c2n2&2}.

For the term R(B#) we may again use Lemma 5.5.3, since the spherical
height of the collar is n&#>n&1>m&1�2, thus

R(B#)�
n+1

4?
c3 |B# | un (cos n&})

�
n+1

4?
c3?(n&#+n&})2 c5n&1�2 (n})3�2�2c3c5n1�2&2#+3}�2,

where we used (5.9) and n&}�n&# (since 0<#�}).
Finally, for the term R(D) we have, similarly, since |D|=2?�n,

R(D)�
n+1

4?
c3

2?
n

un (cos(n&}+n&#))

�c3un (cos(n&#))�c3 c5 n&1�2n3#�2.

From these three estimates and (5.13) it follows that R�
(2c2+3c3 c5) n1�2, provided we can simultaneously satisfy

0<#�}<1, 2&2}� 1
2 , 1

2&2#+ 3
2}� 1

2 , &1
2+ 3

2#� 1
2 .

Since these are all satisfied by, for example,

}= 3
4 , #= 2

3 ,
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it follows from this result and M�- 2?c3c5n1�2<3c3 c5n1�2 that

&Ln&C � C=M+R�(2c2+6c3 c5 ) n1�2,

completing the proof. K

6. CONFORMING QUADRATURE SCHEMES FOR r=3

In this section we show that many quadrature schemes possess the quad-
rature regularity property. We begin with a simple sufficient condition.

Proposition 6.6.1. An infinite family of m-point quadrature rules [Qm]
with positive weights w1 , ..., wm and points x1 , .., xm # S 2 satisfies the quad-
rature regularity property if there exist a1 , a2>0, independent of m, such
that

wj�
a1

m
, j=1, ..., m (6.1)

and

� (xj , xk)�
a2

- m
, j, k=1, ..., m, j{k. (6.2)

Proof. For an arbitrary spherical cap Am of spherical radius 1�- m, it
follows readily from (6.2) that the number of points contained in Am is
bounded independently of m. The quadrature regularity property then
follows immediately from (6.1) on noting that |Am | is of exact order 1�m.

One important class of quadrature rules does not in general satisfy the
conditions of Proposition 6.6.1, but nevertheless can be quadrature regular.
These are the tensor-product rules, which we may introduce this way. The
surface integral of f # C(S 2) can be written as

|
Sr&1

f (x) dx=|
2?

0
|

?

0
f (%, ,) sin % d% d,

=|
2?

0
|

1

&1
F(z, ,) dz d,, (6.3)

where , is the azimuthal angle and % the polar angle, z=cos %, and
F(cos %, ,)= f (%, ,). A tensor-product rule for the integral (6.3) is a rule of
the form

:
k

+k :
j

& jF(z j , ,k)=q,qzF, (6.4)
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where

q, g :=:
k

+k g(,k), qzh :=:
j

& jh(zj), (6.5)

for appropriate choices of the 1-dimensional rules q, and qz , and with both
sums finite. For the azimuthal integration a sensible choice for the rule q, ,
and the only one considered here, is the rectangle rule with spacing
?�(n+1),

q, g :=
?

n+1
:

2n+1

k=0

g \ k?
n+1+ , (6.6)

because this rule is exact for all trigonometric polynomials of degree
�2n+1.

To see how the rule qz should be chosen, recall that the tensor-product
rule q,qz is required to be exact for all spherical polynomials of degree
�2n. Equivalently, we need the rule q,qz to be exact if f is an arbitrary
spherical harmonic Yl, k of degree �2n. The spherical harmonics can be
chosen as

Yl, k (%, ,)={clmPm
l (cos %) cos m,

clm Pm
l (cos %) sin m,

for k=2m+1, m=0, ..., l

for k=2m, m=1, ..., l,

where Pm
l is an associated Legendre function of the first kind. Our choice

of azimuthal quadrature rule already ensures, because m�l, that cos m,
and sin m, are integrated exactly for all l�2n, and therefore ensures that

q, Yl, k=0 for 2�k�2l+1, 0�l�2n.

Thus the desired property holds for spherical harmonics Yl, k with k>1,
and it only remains to prove it for k=1. Since P0

l=Pl , the Legendre poly-
nomial, it follows that the property will hold if and only if

qzh=|
1

&1
h(z) dz \h # P2n [&1, 1]. (6.7)

In words, the requirement is that the rule qz be of algebraic degree of
precision at least 2n.

Example 6.1. Here we choose qz , the quadrature rule over z, to be the
(n+1)-point Gauss-Legendre rule. Then (6.7) is satisfied, because this rule
has degree of precision 2n+1. This choice gives m=2(n+1)2 for the total
number of points. (Stroud [19] gives analogous tensor product Gauss
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rules of specified precision for the sphere for all r�3.) The hyperinterpola-
tion approximation obtained with this rule has been studied in [10], and
the non-optimal result &Ln&C � C�cn2 is proved there.

Example 6.2. Next choose qz to be the Clenshaw�Curtis rule [4],

qzh= :
2n

j=0

&jh \cos
j?
2n+ .

This is an interpolatory rule, in which (as pointed out by Imhof [12]), the
weights can be written explicitly as

&0=&2n=
1
n

:"
n

k=0

1
1&4k2 (6.8a)

&j=&2n& j=
2
n

:"
n

k=0

1
1&4k2 cos

kj?
n

, j=1, ..., n. (6.8b)

(The double prime on the sum indicates that the first and last terms are to
be halved.)

This is a positive-weight rule (see [12]) with degree of precision 2n+1.
The resulting value of m is

m=(2n&1) 2(n+1)+2=4n(n+ 1
2)=4n2+2n,

where we have taken account of the fact that on the sphere there is only
one point with z=+1, and one with z=&1.

Example 6.3. In 1933 Feje� r [8] discussed an interpolatory quadrature
formula based on the ``Filippi'' points, which are the Clenshaw�Curtis
quadrature points excluding the two end-points. The rule was rediscovered
recently by [7, Section 4]. The Feje� r rule of the appropriate precision is

qzh= :
2n+1

j=1

&j h \cos
j?

2n+2+ , (6.9)

where

&j=
2

n+1
sin \ j?

2n+2+ :
n+1

l=1

1
2l&1

sin \(2l&1) j?
2n+2 + , j=1, ..., 2n+1.
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It was shown by [8] that &j>0 for j=1, ..., 2n+1. The hyperinterpola-
tion approximation with this choice of quadrature rule was in effect dis-
cussed by [13], and &Ln&C � C shown there to be of order O(n1�2). With
this rule the value of m is

m=(2n+1)(2n+2)=4n2+6n+2.

Each of the quadrature rules in the three examples above has precision
at least 2n, and therefore generates a valid hyperinterpolation approxima-
tion, when combined with the rectangle rule (6.6). It remains to show that
these tensor-product rules satisfy the quadrature regularity assumption.
The following theorem states a sufficient condition for this property to
hold, which is general enough to include all three examples.

Theorem 6.6.2. For given n�0, let q,qz be a tensor-product rule, with
q, given by (6.6) and qz by the positive weight rule

qzh= :
J

j=1

&jh(z j),

with 1�z1>z2> } } } >zJ�&1, and J�4. With cos % j :=zj , 0�%j�?,
the quadrature regularity assumption holds for these rules if the following
properties all hold for some positive constants a0 , a1 , a2 , a3 , a4 :

a0 (n+1)�J�a1 (n+1), (6.10a)

0<&j�a2

sin %j

n+1
+

a3

(n+1)2 , j=1, ..., J, (6.10b)

%j+1&%j�
a4

n+1
, j=1, ..., J&1. (6.10c)

Proof. Note first that 2(n+1)(J&2)+2�m�2(n+1) J, and that in
consequence a1 (n+1)2�m�2a0 (n+1)2 for J�4.

Let A be a spherical cap of spherical radius 1�- m and axis (%0 , ,0). Our
aim is to prove (5.6) for some constant c. It follows from assumptions
(6.10c) and (6.10a) that only a bounded number of j-values can contribute
to the sum of the weights in (5.6): the number of contributing j-values is
bounded above by w(2�- m)�(a4 �(n+1))x+1�w2�(a4 - a1 )x+1=: a5 if
J�4. Noting that it is sufficient to establish the quadrature regularity
property for each term of the bound in (6.10b) taken separately, we consider
first the case &j�a3 �(n+1)2. In this case the sum of weights +k&j=
?&j �(n+1) from quadrature points in A is bounded by 2?a5a3�(n+1)2�
4?a0 a3 a5 �m, so that for this term the quadrature regularity assumption
holds.
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Now suppose that &j�a2 sin %j �(n+1). Since +k=?�(n+1) for
k=0, ..., 2n+1, the spherical cap assumption holds in this case if we can
show, for each value of j that contributes to the sum of the weights over
the spherical cap, that the number nj of contributing k values (i.e.
nj :=*[(%j , ,k) # A, k=0, ..., 2n+1]) satisfies

nj�a6 �sin % j (6.11)

for some constant a6>0. This is because in this case the bound for the sum
of the quadrature weights is

:
(%j , ,k) # A

+k& j� :
J

j=1

nj
?

n+1
&j� :

J

j=1

a6

sin %j

?
n+1

a2 sin %j

n+1
�

2?a0a2a5a6

m
.

In order to prove (6.11), observe that the constant distance between the
points (%j , ,k) and (%j , ,k+1) measured along the latitude %=%j is
? sin %j �(n+1), whereas the total length of the intersection of that latitude
with A is bounded above by the circumference of A, and hence by 2?�- m.
It follows that

nj�
2?�- m

? sin %j �(n+1)
+1�

a6

sin % j
,

with a6=1+2�- a1 . This proves (6.11), completing the proof. K

We now show that all three of the Examples above satisfy the conditions
of the theorem.

Corollary 6.6.3 Each of Examples 1, 2 and 3 satisfies the quadrature
regularity assumption.

Proof. We show that the conditions (6.10) of Theorem 6.6.2 are
satisfied in each case. We begin with Example 6.3. Note first that the weight
&j in the rule (6.9) is bounded by

|&j |�
c

n+1
sin \ j?

2n+2+=
c

n+1
sin %j , j=1, ..., 2n+1, (6.12)

where %j= j?�(2n+2). This follows from the fact that (4�?)
�l�1 (2l&1)&1 sin(2l&1) % is the Fourier series of the 2?-periodic func-
tion whose value is 1 on (0, ?) and &1 on (&?, 0). Although the partial
sums exhibit the Gibbs phenomenon, their uniform norms are well known
to be uniformly bounded.

Since J=2n+2 and %j=?�(2n+2), it is now clear that the conditions of
Theorem 6.6.2 are satisfied, with a3=0, a0=a1=2 and a4=?�2.
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Now consider the case of Example 6.2, the Clenshaw�Curtis rule. With
%j now defined by

%j=
j?
2n

, j=0, ..., 2n,

it follows from (6.8) that the Clenshaw�Curtis weights can be written as

&j=
2
n

:j :"
n

k=0

1
1&4k2 cos 2k% j , j=0, ..., 2n,

with :0=:2n=1�2 and :j=1, j=1, ..., 2n&1. Now we observe that the
Fourier series of the even, 2?-periodic function |sin %| is

|sin %|=
4
?

:$
�

k=0

1
1&4k2 cos 2k%,

where the single prime indicates that the first term is to be halved. This
allows the weights &j to be written in the form

&j=
?
2n

:j sin %j&r j , j=0, ..., 2n, (6.13)

where

rj=
2
n

:j :$
�

k=n

1
4k2&1

cos %j .

The second term of (6.13), being an absolutely convergent Fourier series,
can be bounded by

|rj |�
1

2n
:
�

k=n

1
(k&1)2�

1
2n |

�

n&2

1
x2 dx=

1
2n(n&2)

�
8

3(n+1)2 if n�3.

It is clear from this bound and (6.13) that the three conditions of
Theorem 6.6.2 are satisfied. This completes the proof for Example 6.2.

Finally, we turn to Example 6.1 and the Gauss rule. In this case
J=n+1, and according to Szego� [20, Equation (5.3.14)],

&j�c
%j

n+1
, j=1, ..., \n+1

2 � ,
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from which it follows, using %�?�2 sin % for 0�%�?�2, together with
&j=&n+2& j , %j=?&%n+2& j for j=1, ..., n+1 that

&j�c
sin %j

n+1
, j=1, ..., n+1.

Finally it is known (see [20, Theorem 6.21.2]) that

2j&1
2n+3

?�%j�
2j

2n+3
?, j=1, ..., n+1,

from which follows

%j+1&%j�
?

2n+3
, j=1, ..., n,

completing the proof. K

Before concluding this section, we note one class of tensor-product rule
for which the validity of the quadrature-regularity property is open. These
are the tensor-product ``spherical t-designs'' of Bajnok [1], which are rules
of the form (6.4), (6.5), (6.6), and with the rule qz of the equal weight form

qzh=
2
J

:
J

j=1

h(z j).

Bajnok proves the existence of rules of this form that are exact for all
h # P2n and for all J sufficiently large: specifically, he shows existence for

J�2(2n)2 (2n+1) - (2n+2)(4n+1)(4n+2 - 4n+4)+5.

Note that J is very large, the right hand side being of order O(n4.5), thus
Theorem 6.6.2 is not available. The practical usefulness of rules with such
a large number of points must be questionable.

7. INTERPOLATION IN THE UNIFORM NORM

For completeness we briefly review known results for the interpolatory
approximation 4n f in the uniform norm.

Given a fundamental system [x1 , ..., xdn
], the Lagrange polynomials

[l1 , ..., ldn
]�Pn are defined, as usual, by

lj # Pn , lj (x i)=$ji , i, j=1, ..., dn . (7.1)
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For given f # C(S r&1) the classical expression for 4n f is then

4n f = :
dn

j=1

f (xj) lj , (7.2)

which manifestly satisfies the interpolatory property (3.1). From this it
follows easily that

&4n&C � C= max
x # Sr&1

:
dn

j=1

|lj (x)|, (7.3)

which is the so-called Lebesgue constant for interpolation.
The value of &4n&C � C depends on the choice of the fundamental system

[x1 , ..., xdn
]. One knows that &4n &C � C can be made arbitrarily large if the

fundamental system is badly chosen. The interesting question is how small
&4n&C � C can be made by a judicious choice of fundamental system. Little
is known about this question.

One known result, from the work of Reimer [16], is that there exists a
fundamental system with &4n&C � C�dn . This property holds if the
fundamental system is ``extremal''. A fundamental system X=[x1 , ..., xdn

]
is extremal if it maximizes |det S(x1 , ..., xdn

)|, where

s1 (x1) } } } s1 (xdn
)

S(x1 , ..., xdn
)=_ b

. . . b & ,
sdn

(x1) } } } sdn
(xdn

)

and [s1 , ..., sdn
] is any fixed basis for Pn . The significance of the fundamen-

tal system being extremal follows from the explicit representation for lj ,

lj (x)=
det S(x1 , ..., xj&1 , x, xj+1 , ..., xdn

)

det S(x1 , ..., xj&1 , x j , x j+1 , ..., xdn
)
, j=1, ..., dn , x # S r&1,

in that the extremal property gives immediately

&lj&�=1, j=1, ..., dn ,

and hence from (7.3)

&4n&C � C�dn .

This bound, which for r=3 gives &4n&C � C�(n+1)2, is sometimes very
pessimistic.

Reimer [15] and Freeden et al. [9] have pointed out that the
``Lagrangian square sums'' can play a useful role in the estimation of
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&4n&C � C , in the following way. By an application of the Cauchy�Schwarz
inequality to (7.3), we obtain

&4n&C � C�d 1�2
n max

x # S r&1 \ :
dn

j=1

l j (x)2+
1�2

. (7.4)

Now the matrix G with elements defined by (4.3) and (4.12) is a symmetric
positive-definite matrix, with eigenvalues *j which can be chosen to satisfy

0<*min=*1� } } } �*dn
=*max .

It is well known that upper and lower bounds on the Lagrangian square
sums are given by

Gn (x, x)
*max

� :
dn

j=1

lj (x)2�
Gn (x, x)

*min

,

which is Theorem 1 of Reimer [15] or Lemma 7.2.1 of Freeden et al. [9].
Noting that Gn (x, x) is independent of x, it is useful to rewrite this as

*avg

*max

� :
dn

j=1

lj (x)2�
*avg

*min

, (7.5)

where by (4.8),

*avg :=
*1+ } } } +*dn

dn
=

Tr G
dn

=G� n (1)=
dn

|S r&1|
, (7.6)

since all diagonal elements have the same value G� n (1). Using (7.5) together
with (7.4) now gives

&4n&C � C�d 1�2
n \*avg

*min+
1�2

, (7.7)

which is Corollary 2 of [15] and Lemma 7.2.2 of [9].
Reimer notes in particular (in Corollary 3 of [15]) that in the special

case that the eigenvalues are all equal, i.e. *1= } } } =*dn
, the result reduces

to

&4n&C � C�d 1�2
n . (7.8)

This result is also given by Theorem 5.5.2 for the hyperinterpolation
operator, if we use the fact (see [18]) that interpolation is a special case
of hyperinterpolation when the eigenvalues are all equal. We note, though,
that for r�3 and n�3 the eigenvalues can not be equal. This follows (as
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pointed out by [16]) from the fact that equality of the eigenvalues would
imply, via (7.5), that �lj (x)2#1 for x # S r&1, yet the latter is shown by
Bos [3] to be impossible for r�3 and n�3.

At the present time it is an open question whether the bound (7.7) can
be improved. In the case r=3 the bound is (n+1)(*avg �*min)1�2�n+1. In
a future paper we shall report empirical indications of the existence of
fundamental systems that give a rate of growth for the norm &4n & close to
O(n).
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